

The Quanser Q1-cRIO is a C series module for the National Instruments CompactRIO controller. Designed specifically for controls education, it enables easy interface with Quanser control experiments.

SIMPLER INTERFACING AND FASTER CONNECTIVITY

The Q1-cRIO data acquisition and control module provides a convenient set of inputs and outputs via plug and play connectors, enabling you to set up your lab workstations quickly, right out of the box. The Q1-cRIO is driven by Quanser Rapid Control Prototyping [QRCP] toolkit for LabVIEW[™], which makes development of powerful control algorithms for NI cRIO straightforward and efficient. Pre-developed control VI's based on QRCP are provided with each Quanser experiment. As a result, students can speed up their programming and have more time available for high level learning.

HOW IT WORKS

The Q1-cRIO data acquisition and control module has one analog input, one analog output, and two configurable, single-ended encoder input interfaces. This configuration minimizes the need for additional equipment.

All inputs and outputs are accessed simultaneously using unbuffered single-point reads and writes, a requirement for real-time control applications.

Plug and play connectors and provided custom cables allow for fast, error-free setup of controls workstations.

QRCP supports four Q1-cRIO configurations, i.e. using NI CompactRIO with one, two, three or four Q1-cRIO modules. This allows you to interface with a wide range of Quanser control experiments used for teaching and research.

The Quanser Q1-cRIO, when driven by QRCP, provides hardware velocity estimation, resulting in controllers with greater stability.

The Quanser Q1-cRIO module can only be used with the NI cRIO-9024 controller with cRIO-9113 or cRIO-9114 chassis, or NI cRIO-9074 controller.

NI Part No. 782689-01 See system specifications on reverse.

QUANSER - NI cRIO-BASED PLATFORM COMPONENTS

Quanser control experiment with amplifier Up to four Q1-cRIO data acquisition and control modules* NI CompactRIO system* Quanser Rapid Control Prototyping (QRCP) software for NI LabVIEW[™]

A turn-key Active Suspension workstation with a NI cRIO and two Quanser Q1-cRIO modules. For a complete list of Quanser control experiments compatible with NI cRIO, contact info@quanser.com

SYSTEM SPECIFICATIONS Q1-cRIO Module

FEATURES

- Fully supported by QRCP toolkit for NI LabVIEW™
- QRCP fixed FPGA personality supports one to four Q1-cRIO modules
- Unique combination of I/O:
 - 1x analog in
 - 1x analog out
 - 2x encoder inputs

- Plug and play connectors and cables
- Hardware velocity estimation from encoder counts, improved slow speed estimation

DEVICE SPECIFICATION

DC power input voltage range	9.0 V - 30 V DC
Input power (fully loaded)	2000 mW
Encoder counter size	24 bits
Encoder velocity counter size	24 bits
Encoder maximum 4x quadrature frequency (no filter)	20 MHz
Analog output resolution	16 bits
Analog output default voltage range	± 10 V
Analog output configurable voltage ranges	\pm 5 V, \pm 10 V, \pm 10.8 V, + 5 V, + 10 V, + 10.8 V
Analog output typical slew rate	3.5 V/µs
Analog output typical output noise	80 μV RMS
Analog input resolution	16 bits
Analog input default voltage range	± 10 V
Analog input maximum input voltage	± 15 V
Analog input configurable voltage range	± 5 V, ± 10 V
Analog input typical input impedance	1 MΩ
Analog input typical signal to noise ratio (±10 V)	90 dB
CompactRIO compatibility	NI cRIO-9024 controller with cRIO-9113 or cRIO-9114 chassis
	NI cRIO-9074 controller

About Quanser:

Guanser is the world leader in education and research for real-time control design and implementation. We specialize in outfitting engineering control laboratories to help universities captivate the brightest minds, motivate them to success and produce graduates with industry-relevant skills. Universities worldwide implement Guanser's open architecture control solutions, industry-relevant curriculum and cutting-edge work stations to teach Introductory, Intermediate or Advanced controls to students in Electrical, Mechanical, Mechatronics, Robotics, Aerospace, Civil, and various other engineering disciplines.

QUANSER.COM | +1-905-940-3575 | INFO@QUANSER.COM

P. 2 OF 2

Products and/or services pictured and referred to herein and their accompanying specifications may be subject to change without notice. Products and/or services mentioned herein are trademarks or registered trademarks of Quanser Inc. All rights reserved.